
 Copyright © D-TACQ Solutions Ltd 2020

This factory acceptance test outlines the procedures
undertaken to demonstrate that the equipment is

functioning as intended.

Minimum required release:
RELEASE acq400-228-20200625141955

4 * ACQ2106 + ACQ423 in low
latency control mode to a single

host.

 Copyright © D-TACQ Solutions Ltd 2020

Revision of document.

Date Change

29.06.2020 Init

 Copyright © D-TACQ Solutions Ltd 2020

Load driver for low latency control.

To configure the host computer for low latency control
mode there is a script that must be run in order to
load the driver for the module. The script can be
found in the D-TACQ AFHBA404 github repo here:

https://github.com/D-TACQ/AFHBA404

To load please run the following commands inside the
AFHBA404 directory after cloning (or updating) the
repository:

sudo make

sudo ./scripts/install-hotplug

sudo ./scripts/loadNIRQ

https://github.com/D-TACQ/AFHBA404

 Copyright © D-TACQ Solutions Ltd 2020

Installing acq400_hapi

The user will need to clone acq400_hapi from GitHub and install it
on PIP. The repository can be found here:

https://github.com/D-TACQ/acq400_hapi

The repository should be cloned to the following location on the host
computer:

/home/$USER/PROJECTS/

It can be cloned using the following command:

git clone https://github.com/D-TACQ/acq400_hapi.git

Once this repository has been cloned, acq400_hapi can be installed
by running:

sudo pip3 install acq400_hapi

https://github.com/D-TACQ/acq400_hapi

 Copyright © D-TACQ Solutions Ltd 2020

 Copyright © D-TACQ Solutions Ltd 2020

Set up CS Studio

Configure CS Studio to monitor the UUTs. It is best to use the
STREAMVIEW4.opi. Configure a CS Studio workspace as
such:

Set macros UUT1 UUT2 UUT3 UUT4 from

Edit|Preferences|CSS Applications->Display->BOY|OPI Runtime

Run STREAMVIEW4.opi direct from Navigator

 new file: ACQ400/STREAMVIEW4.opi

 new file: ACQ400/opi/stream_view.opi

An image showing what the CS Studio OPI looks like is
included in the following slide.

 Copyright © D-TACQ Solutions Ltd 2020

N.B. The UUTs shown in this image are not the UUTs that the user will be using. Adjust the UUT names accordingly.

 Copyright © D-TACQ Solutions Ltd 2020

Isolating CPUs

For performance reasons it makes sense to isolate a CPU (or more than one) to
handle the control program. This means that the linux scheduler will not be
allowed to allocate any other processes to the CPUs that have been isolated. To
get a task to run on the isolated CPUs the user must explicitly specify which
CPUs the program is allowed to run on either using taskset or sched_set_affinity.

To isolate CPUs the user should edit the grub file. An example grub file is provided
on the following slide. Once the file has been edited the user should make a new
grub config like so:

grub-mkconfg -o /boot/grub/grub.cfg

Once this has been done a reboot is required for the changes to be implemented.
To check the changes were successful the user can use:

[dt100@seil ~]$ cat /sys/devices/system/cpu/isolated

0-1

 Copyright © D-TACQ Solutions Ltd 2020

New grub file with CPUs isolated.
[dt100@seil ~]$ cat /etc/default/grub

GRUB_SAVEDEFAULT=true

GRUB_DEFAULT=0

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

#GRUB_CMDLINE_LINUX_DEFAULT=""

GRUB_CMDLINE_LINUX="console=ttyS1,115200 console=tty0"

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=0,1"

isolcpus="0,1"

GRUB_TERMINAL="serial"

GRUB_SERIAL_COMMAND="serial --speed=115200 --unit=0 --word=8 --parity=no --stop=1"

GRUB_INIT_TUNE="480 440 1"

 Copyright © D-TACQ Solutions Ltd 2020

Control script
A control script has been created to automate the LLC capture. It is contained in the scripts directory

of the AFHBA404 GitHub repository referenced in the previous slide.

To run the script “cd” into the AFHBA404 directory and run the following command:

./scripts/acqproc_multi.sh

There are a few parameters which can be configured inside the script. These include whether or not
to use MDSplus (entirely optional) and which UUTs are currently being used. The UUTs being
used can be changed from the “ACQPROC/config/swip1.json” file and there are example
configuration files in ACQPROC/config/. These files can be copied and the UUT names and
channel counts adjusted for any future systems the user may have.

The control script will configure the system clocks using the sync_role script. This can also be
configured to suit the users needs. By default it is set to configure the first system as a “master”
and all subsequent systems as slaves over HDMI. This setting can be changed to “fpmaster” if
the user wishes to use a front panel clock and trigger. The default clock speed is 20kHz
although this can also be customized. The slaves always share the same clock as the master
system.

Once the system is configured for capture the control program is started. After the control program
has been started the system is armed and triggered. The default capture length is 400k samples
and this is also configurable.

 Copyright © D-TACQ Solutions Ltd 2020

Detailed explanation of config file
The configuration file (JSON format) contains all of the information the control program and the

control scripts need to configure all of the necessary UUTs. All of the UUTs in the config file will
be configured by the control script and the control program will then capture from the specified
UUTs. This makes the system entirely data driven and there is now no need to change and then
recompile the control program every time the system configuration changes. The system will
now intelligently be configured entirely based on the users specification. It will save any user a
lot of time and effort switching to the new ACQPROC scheme.

The default configuration file can be changed by setting the following parameter on the command
line:

export ACQPROC_CONFIG=./ACQPROC/configs/acq2106_423_4.json

This will change the configuration file used by the control program and control scripts to the one
specified by the user. The user can create custom configuration files to drive the system in the
way they want. An example configuration file is shown on the following page.

Please note that the default configuration is swip1.json and this will need to be changed to another
more relevant configuration file using the commands shown above. For more information on
ACQPROC it is useful to read and refer to the ACQPROC README on github, which can be
accessed from here:

https://github.com/D-TACQ/AFHBA404/blob/master/ACQPROC-README.md

https://github.com/D-TACQ/AFHBA404/blob/master/ACQPROC-README.md

 Copyright © D-TACQ Solutions Ltd 2020

{
 "AFHBA": {
 "DEVNUM": 0,
 "UUT": [
 {
 "name": "acq2106_241",
 "type": "pcs",
 "VI": {
 "AI16": 32,
 "SP32": 16
 }
 },
 {
 "name": "acq2106_243",
 "type": "pcs",
 "VI": {
 "AI16": 32,
 "SP32": 16
 }
 },
 {
 "name": "acq2106_239",
 "type": "pcs",
 "VI": {
 "AI16": 64,
 "SP32": 16
 }
 },
 {
 "name": "acq2106_240",
 "type": "pcs",
 "VI": {
 "AI16": 64,
 "SP32": 16
 }
 }
]
 }
}

ONE AFHBA404 HOST CARD
 # /dev/rtm-t.0

UUT[0]
HOSTNAME: look up ip address in /etc/hosts/
pcs style
VI : Input Vector
 # 32 AI, 16 bit
 # 16 SP32, Status longwords

UUT[1]
HOSTNAME: look up ip address in /etc/hosts/
pcs style
VI : Input Vector
 # 32 AI, 16 bit
 # 16 SP32, Status longwords

UUT[2]
HOSTNAME: look up ip address in /etc/hosts/
pcs style
VI : Input Vector
 # 64 AI, 16 bit
 # 16 SP32, Status longwords

UUT[3]
HOSTNAME: look up ip address in /etc/hosts/
pcs style
VI : Input Vector
 # 64 AI, 16 bit
 # 16 SP32, Status longwords

 Copyright © D-TACQ Solutions Ltd 2020

Explanation of the control scripts
There are two control scripts that are used to configure the systems for LLC capture.

The first is llc-config-utility.py which configures the aggregator and distributor
onboard the FPGA on all of the systems.

Then the clocks are set by sync_role.py. The clocks can be configured by the user (the
clocks should not be set faster than ~500kHz). The first acq2106 is known as the
master and is configured as “master” by default. It can also be configured as
“fpmaster” to use the front panel clock and trigger instead.

 Copyright © D-TACQ Solutions Ltd 2020

Output of the control script

The control script will display a histogram of the T_LATCH values,
showing how many samples were missed by the host computer
(the T_LATCH is the sample counter, so the difference between
any two consecutive samples should be one). Ideally there should
be no samples missed. There is also some textual output of the
T_LATCH histogram data.

Usually the control script will configure the systems to report
latencies in the scratchpad. However, systems that do not contain
an AO module WILL NOT report these latencies. D-TACQ
prepared a histogram of the latencies by including an AO module
for the user to view, but this will not be possible for the user. As
such, the user will not receive latency data in the scratchpad for
acq423 systems that do not have an AO module.

 Copyright © D-TACQ Solutions Ltd 2020

Sample construction
Sample 1 Sample 2 ... Sample N

32 * NCHAN short
words of AI data

(where 32767 = 10V
And -32768 = -10V)

16 long words of
scratchpad

[0]
 Sample
counter

[1]
Micro-

Second
counter

[2]
Pollcat

(busy wait
time >1 is

good)

[3]
Difftime in

microseconds
(absolute time

waiting
for sample)

N/A N/A N/A N/A

Note: In the scratchpad blue
fields are generated
on the acq2106 and

yellow fields are inserted
by the control program

 Copyright © D-TACQ Solutions Ltd 2020

Histogram of the sample counter
(T_LATCH) on an ideal run.

N.B. With an i7-6700K CPU @ 4.00GHz
there were no recordings of missed
samples in the T_LATCH in any of the 4
UUTs sampling at 20kHz.

 Copyright © D-TACQ Solutions Ltd 2020

Histogram of the FPGA maximum
latency register.

N.B. Latency registers are not available to users
on systems not containing an AO module.

 Copyright © D-TACQ Solutions Ltd 2020

Plotting data from the first UUT
The files saved by previous control programs were not named after the UUT but by their position on the AFHBA404

card. ACQPROC now uses the JSON file provided to output files named after their respective UUTs.

The command to view any specific channel(s) use a python script called host_demux.py which can be found in the
user_apps/analysis/ directory of acq400_hapi. An example command is as such:

./host_demux.py --src=/home/dt100/PROJECTS/AFHBA404/acq2106_239_VI.dat --nchan=96 \ --
pchan=1 --data_type=16 --plot_mpl=1 --mpl_subrate=1 acq2106_239

This is just an example command. The channel to plot can be changed to any channel the user wishes (or more than
one channel by providing --pchan=1,2,3 for example). The output from the above command is included below.

 Copyright © D-TACQ Solutions Ltd 2020

Analysing the latency of the data

While the latency cannot be measured easily on an
acq423 system with no AO module, the following
documentation is still recommended for the user. The
D-TACQ low latency white paper is available here:

http://www.d-tacq.com/resources/LLC_White_Paper.pdf

And the D-TACQ LLC system latency measurement
guide, available here:

LLC-system-latency-measurement-guide.pdf

The following page contains a scope trace showing the
latency of the system.

http://www.d-tacq.com/resources/LLC_White_Paper.pdf
https://github.com/seanalsop/LLC-system-latency-measurement-guide/releases/download/v1/LLC-system-latency-measurement-guide-r5.pdf

 Copyright © D-TACQ Solutions Ltd 2020

Saving channelised data
We can use a first order taylor series expansion to accurately approximate the difference in phase between the systems. If we

sample the same sine wave from a signal generator we can compare the signals using python. There are a number of
steps to complete.

1. Make a local copy of each channel using host_demux.py. The host_demux.py script was used earlier in the guide to view
the data. It can also be used to save the data. The following terminal output text shows how it was used to save data to
the AFHBA404 directory.

[dt100@seil AFHBA404]$ pwd

/home/dt100/PROJECTS/AFHBA404

[dt100@seil AFHBA404]$../acq400_hapi/user_apps/analysis/host_demux.py --nchan=64 --src="./acq2106_241_VI.dat" --
data_type=16 --plot_mpl=1 --mpl_subrate=1 --pchan="1" --save=acq2106_241 acq2106_241

The above pwd shows where the commands are being run from. We call into acq400_hapi user_apps to use host_demux.py.
The --save option is specified to be the name of the UUT. This is repeated for each UUT that the user wishes to analyse.
Doing this for all of the UUTs results in the following directory structure in side AFHBA404:

[dt100@seil AFHBA404]$ ls -ld *acq*/

drwxrwxr-x. 2 dt100 dt100 4096 Jul 2 15:17 acq2106_241/

drwxrwxr-x. 2 dt100 dt100 4096 Jul 2 15:17 acq2106_243/

drwxrwxr-x. 2 dt100 dt100 4096 Jul 2 15:18 acq2106_245/

drwxrwxr-x. 2 dt100 dt100 4096 Jul 2 15:18 acq2106_246/

 Copyright © D-TACQ Solutions Ltd 2020

Phase analysis of saved data
Once the data has been saved to disk using the steps outlined in the previous slide the user can then begin to analyse the

data. The following is the commands used from inside the AFHBA404 directory to verify the phase. For a greater in depth
explanation of the algorithm used please consult the phase_delay.py python script. In the output below some of the text
has been removed (the radians and degrees reports) due to space constraints.

[dt100@seil AFHBA404]$../acq400_hapi/test_apps/phase_delay.py
--file1=./acq2106_241/acq2106_241_01.dat --file2=./acq2106_243/acq2106_243_01.dat --
fsig=2 --s_clk=20000 --type=16

Difference in seconds is 3.6e-06

Difference as % of sample clock 7.2

[dt100@seil AFHBA404]$

[dt100@seil AFHBA404]$../acq400_hapi/test_apps/phase_delay.py
--file1=./acq2106_241/acq2106_241_01.dat --file2=./acq2106_245/acq2106_245_01.dat --
fsig=2 --s_clk=20000 --type=16

Difference in seconds is 5.4e-06

Difference as % of sample clock 10.8

[dt100@seil AFHBA404]$

[dt100@seil AFHBA404]$../acq400_hapi/test_apps/phase_delay.py
--file1=./acq2106_241/acq2106_241_01.dat --file2=./acq2106_246/acq2106_246_01.dat --
fsig=2 --s_clk=20000 --type=16

Difference in seconds is 2.6e-06

Difference as % of sample clock 5.33637991476

 Copyright © D-TACQ Solutions Ltd 2020

Repeating ACQPROC: 4 UUTs
each with 4 acq423 cards

To highlight how easy it is to work with different UUT types and
stacks ACQPROC will be used again with a different UUT stack
configuration and a corresponding different configuration file. The
new file is also on GitHub and is called acq2106_423_4x4.json.
The line used to run this ACQPROC instance was as follows:

ACQPROC_CONFIG=./ACQPROC/configs/acq2106_423_4x4.json
VERBOSE=0 ./scripts/acqproc_multi.sh

The configuration file is loaded and is used to set up all the clocks as
before and then ACQPROC uses the information to set up an LLC
transfer.

 Copyright © D-TACQ Solutions Ltd 2020

Phase analysis of the 4 UUT
stack data.

If the steps outlined in previous slides are followed for these UUTs (using
host_demux.py to save the data and then using phase_delay.py to
analyse the phase) the following information can be obtained.

UUT (compared
to UUT 1)

Phase
difference (% of
sample clock)

Phase
difference
(microseconds)

2 7.2 4.6

3 11 5.7

4 5.9 3.0

 Copyright © D-TACQ Solutions Ltd 2020

Repeating ACQPROC: 4 UUTs
each with 3 acq423 cards

For the specific case of four acq2106 systems in a stack, each with 3
acq423 cards the following configuration can be used. Again, all
that needs to be changed is the configuration file. The command
used to run this ACQPROC instance was as follows:

ACQPROC_CONFIG=./ACQPROC/configs/acq2106_423_4x3.json
VERBOSE=0 ./scripts/acqproc_multi.sh

If the steps outlined in previous slides are followed for these UUTs (using
host_demux.py to save the data and then using phase_delay.py to
analyse the phase) the following information can be obtained.

UUT (compared to
UUT 1)

Phase difference (% of
sample clock)

Phase difference
(microseconds)

2 7.3 3.7

3 11 5.7

4 5.8 2.9

 Copyright © D-TACQ Solutions Ltd 2020

Running the same test on 6 UUTs

To show the flexibility and ease of use of the ACQPROC system we will
now move to 6 UUTs. To do this a new configuration file is created with
6 UUTs. This file is called acq2106_423_6.json and is available in the
configs directory in ACQPROC. Once the configuration file has been
changed run acqproc_multi.sh again with

export ACQPROC_CONFIG=./ACQPROC/configs/acq2106_423_6.json

This is all the user needs to change to run with the extra UUTs in the loop.
Note that a single AFHBA404 card will only take 4 UUTs, so if the user
wishes to expand upon 4 UUTs then they must fit 2 AFHBA404 cards in
the one host PC. All other steps are the same.

 Copyright © D-TACQ Solutions Ltd 2020

Phase analysis for 6 UUTs

Repeating the steps outlined for phase analysis earlier in
this document for 6 UUTs the following results were
obtained:

UUT (compared
to UUT 1)

Phase
difference (% of
sample clock)

Phase
difference
(microseconds)

2 7.3 3.6

3 10.8 5.4

4 5.7 2.8

5 6.2 3.1

6 6.5 3.2

 Copyright © D-TACQ Solutions Ltd 2020

Using ACQPROC with a PCS
system and remote AO

To again demonstrate the flexibility of ACQPROC we can use an acq2106 with 4*acq424
cards, an ao424 and a dio432 paired with another acq2106 with an ao420. To do this use
the acq424_remote_ao.json configuration file which can be found in the
ACQPROC/configs/ directory. To use the config the user can export the environment
variable ACQPROC_CONFIG as shown below:

export ACQPROC_CONFIG=./ACQPROC/configs/acq424_remote_ao.json

Once this has been exported the user can then run ACQPROC on their system and capture
data from the systems. Below is a table of phase relationships between the first channel,
the ao424 looped back to an acq424 and the ao420 looped back to an acq424. Note that
this is a very different number from the previously included phase relationships.
Loopbacked AOs have a larger phase difference due to having to be routed through the
AFHBA404 and resampled by the AI cards.

AO module (looped
back to AI module)

Phase difference (% of
sample clock)

Phase difference
(microseconds)

ao424 89 44

ao420 98 49

 Copyright © D-TACQ Solutions Ltd 2020

Example of latencies with an
acq424 LLC system paired with a

remote AO system.

Green: Signal generator (square wave)
Yellow: First AO output

Orange: Second AO output
Round trip latency of approx. 12us.

 Copyright © D-TACQ Solutions Ltd 2020

A 7 UUT mixed AI AO system

A 7 UUT mixed acq423, acq424, ao424 and dio432 system
was tested to verify that ACQPROC can handle many
configurations. This is provided that the correct configuration
json file format is used. In order to test the configuration the
following configuration file was used:

7_uut_system.json

The phase difference was reduced to 67% of a sample clock or
33 microseconds.

 Copyright © D-TACQ Solutions Ltd 2020

7 UUT system scope trace
showing latency

AO424 output in yellow
showing a latency of

approx. 18 microseconds in
an LLC configuration looped back

to an acq423

 Copyright © D-TACQ Solutions Ltd 2020

Using hexdump to view the data

It can be useful to hexdump the data to check
its composition. The following command may
be changed to check different columns of
long word data (scratchpad data for
instance).

hexdump -e '48/4 "%08x," "\n"' acq2106_239_VI.dat | cut -d, -f1,4,8,49-55 |
head

The following command will work for viewing
short word data (acq424 channels for
instance).

hexdump -e '96/2 "%04x," "\n"' acq2106_239_VI.dat | cut -d, -f1-10 | more

 Copyright © D-TACQ Solutions Ltd 2020

Debug

If something doesn’t work in acqproc_multi.sh then there are a few
steps to take to make sure things are configured correctly. The
acqproc_multi script assumes that the system configuration is
identical to that in the diagram on page 5. It is worth checking that
this is the case. HDMI connections and SFP connections are
crucial to have wired correctly.

If the system is configured exactly as shown on page 5, then the
user should check the clocks and triggers on each UUT
individually. The best method of doing this is using CS Studio.
Instructions for installing and using CS Studio can be found here:

https://github.com/D-TACQ/ACQ400CSS

Once CS Studio is installed the user should check for each UUT that
the clocks and triggers are accounted for.

https://github.com/D-TACQ/ACQ400CSS

 Copyright © D-TACQ Solutions Ltd 2020

CS Studio counters page
The CS Studio counters page should look very similar to the image below after running a

capture using acqproc_multi.sh. It contains the information for the clocks on each site and
information about the triggers. In this case the trigger is set to soft, so we get 1 soft trigger
in the d1 trigger counter box, and a corresponding trigger in the d2 trigger box. The user
should check this information for each UUT.

 Copyright © D-TACQ Solutions Ltd 2020

Check UUTs are streaming

To check that the UUTs are streaming data the user should observe the stream tab
of the capture OPI as shown below. During a capture the sample count should be
ticking up. The clock speed should also be visible in the box next to it. The rate
will also be visible in the rate box. Again, this should be verified for all UUTs.

 Copyright © D-TACQ Solutions Ltd 2020

Check CS Studio MGT-SFP page
The MGT-SFP page is useful for checking whether data has been sent to the host and if data

has been returned from the host. After running one capture the page should look similar to
the image below. There should be 1 push buffer and 1 pull buffer with a non zero value in
each (how large depends on how much data has been streamed). Check all the UUTs are
the same after rebooting and running a single capture.

 Copyright © D-TACQ Solutions Ltd 2020

Checking which sites are enabled

If there is data going to the host (as shown in
the previous page), but the system still isn’t
working, then check that the correct sites are
included in the aggregator. This can also be
seen in the image in the previous slide in the
‘push’ and ‘pull’ boxes in the MGT-SFP OPI.

	Title
	Revisions
	Driver install
	acq400_hapi install
	System diagram
	Setting up CS-Studio
	CSS
	Isolating CPUs
	GRUB file
	Control script
	JSON explanation
	Config example
	Control script 2
	Control script output
	Sample construction
	T_LATCH histogram
	Latency histogram
	Plotting 1
	Analysing latency
	Saving channelised data
	Phase analysis of saved data
	Repeating with 4 UUTs
	Phase analysis
	ACQPROC - 4 UUTs by 3 acq423s
	Six UUT test
	Phase analysis for 6 UUTs.
	Remote AO
	Remote AO scope trace
	7 UUT mixed system
	Scope trace for 7 UUTs
	Analysing phase of channelised data
	Debug 1
	Debug 2
	Debug 3
	Debug 4
	Debug 5

