

This factory acceptance test outlines the procedures
undertaken to demonstrate that the equipment is

functioning as intended.

Minimum required release:
acq400-131-20191107115916

Recommended:
RELEASE acq400-166-20200306104841 (or newer)

3 * ACQ2106 + 4xACQ424 + AO424 +
DIO432 in low latency control mode to a

single host using ACQPROC.

Revision of document.

Date Change

17.03.2019 Init

19.03.2019 pgm: add acqproc doc

Low Latency Control Concept

● Low Latency Control LLC :
– used in PCS over 4 generations D-TACQ HW

● In 4G, the ACQ2106 DAQ appliance (UUT) controls data flow to a HOST PC via
AFHBA404, PCIe, DMA.
– Input : On the Clock, all INPUTS are sent as a single Vector In (VI) to HOST MEMORY
– Output: On the Clock, all OUTPUT demand values are collected from HOST memory as a single

Vector Out (VO).

● A single AFHBA404 can host up to 4 UUTS
● We’re using a new configuration file driven software core “ACQPROC”. please see

– https://github.com/D-TACQ/AFHBA404/blob/master/ACQPROC-README.md

● Control Script:
– scripted configuration and control of the UUTS by Ethernet, calling

● Control Program
– This is the ACQPROC core that contains the REALTIME data handling element.
– Note that our implementation of ACQPROC is just a stub, we expect users to add their own data

sharing, computation, perhaps by subclassing from ACQPROC.SystemInterface

● Post shot data store and analysis
– Additional scripts to manage the data postshot.

https://github.com/D-TACQ/AFHBA404/blob/master/ACQPROC-README.md

Load driver for low latency control.

To configure the host computer for low latency control mode there is a
script that must be run in order to load the driver for the module. The script
can be found in the D-TACQ AFHBA404 github repo here:

https://github.com/D-TACQ/AFHBA404

To load please run the following commands inside the AFHBA404 directory
after cloning (or updating) the repository:
sudo make

sudo ./scripts/install-hotplug

sudo ./scripts/loadNIRQ

N.B. Make sure that you use at least:
https://github.com/D-TACQ/AFHBA404/releases/tag/1.4.1

Or higher.

https://github.com/D-TACQ/AFHBA404
https://github.com/D-TACQ/AFHBA404/releases/tag/1.4.1

Installing acq400_hapi

We assume a USER name “dt100”

The user will need to clone acq400_hapi from GitHub and install it on PIP.
The repository can be found here:

https://github.com/D-TACQ/acq400_hapi

The repository should be cloned to the following location on the host
computer:

/home/$USER/PROJECTS/

It can be cloned using the following command:
git clone https://github.com/D-TACQ/acq400_hapi.git

Once this repository has been cloned, acq400_hapi can be installed by
running:
sudo pip3 install acq400_hapi

https://github.com/D-TACQ/acq400_hapi

ACQ424

ACQ424

ACQ424

ACQ424
SFP

HDMI

ACQ424

ACQ424

ACQ424

ACQ424

DIO432

SFP
AO424

HOST

SFP B

SFP A

B
N
C

P
A
N
E
L

Signal
Generator

HDMI

acq2106_S01

acq2106_M01

acq2106_M01 – Master
acq2106_S01 – Slave

FP CLK FP TRG

Front panel clock
and trigger
should be
provided by the
user.

B
N
C

P
A
N
E
L

Set up CS Studio

Configure CS Studio to monitor the UUTs. For
only two UUTs it is easier to use two separate
workspaces, one for each UUT. Follow the
instructions here to install CS Studio and
configure the workspaces for the UUTs:
https://github.com/D-TACQ/ACQ400CSS

https://github.com/D-TACQ/ACQ400CSS

Isolating CPUs

For performance reasons it makes sense to isolate a CPU (or more than one) to
handle the control program. This means that the linux scheduler will not be
allowed to allocate any other processes to the CPUs that have been isolated. To
get a task to run on the isolated CPUs the user must explicitly specify which
CPUs the program is allowed to run on either using taskset or sched_set_affinity.

To isolate CPUs the user should edit the grub file. An example grub file is
provided on the following slide. Once the file has been edited the user should
make a new grub config like so:

grub-mkconfg -o /boot/grub/grub.cfg

Once this has been done a reboot is required for the changes to be implemented.
To check the changes were successful the user can use:

[dt100@seil ~]$ cat /sys/devices/system/cpu/isolated

0-1

New grub file with CPUs isolated.

[dt100@seil ~]$ cat /etc/default/grub

GRUB_SAVEDEFAULT=true

GRUB_DEFAULT=0

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

#GRUB_CMDLINE_LINUX_DEFAULT=""

GRUB_CMDLINE_LINUX="console=ttyS1,115200 console=tty0"

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=0,1"

isolcpus="0,1"

GRUB_TERMINAL="serial"

GRUB_SERIAL_COMMAND="serial --speed=115200 --unit=0 --word=8 --parity=no --stop=1"

GRUB_INIT_TUNE="480 440 1"

Control script

A control script has been created to automate the LLC capture. It is contained in the scripts
directory of the AFHBA404 GitHub repository referenced in the previous slide.

To run the script “cd” into the AFHBA404 directory and run the following command:
./scripts/acqproc_multi.sh

There are a few parameters which can be configured inside the script. These include whether
or not to use MDSplus (entirely optional) and which UUTs are currently being used. If the
user wishes to use MDSplus the local MDSplus server must also be specified.

The control script will configure the system clocks using the sync_role script. This can also
be changed. By default it is set to configure the first system as a “master” and all subsequent
systems as slaves over HDMI. This setting can be changed to “fpmaster” if the user wishes
to use a front panel clock and trigger. The default clock speed is 20kHz although this can
also be changed. The slaves always share the same clock as the master system.

Once the system is configured for capture the control program is started. After the control
program has been started the system is armed and triggered. The default capture length is
400k samples and this is also configurable.

Editing the JSON configuration file

The control program is data driven using a
JSON configuration file.
– This is defined at the top of acqproc_multi.sh
– ACQPROC_CONFIG=${ACQPROC_CONFIG:-./ACQPROC/configs/swip1.json}

– For alternative configurations, please review content of ./ACQPROC/configs for examples, and it’s
possible to select a new config with

● export ACQPROC_CONFIG=./ACQPROC/configs/custom_config

– Configuration points in acqproc_multi.sh

● UUT1, UUT2, UUTS are created automatically from ACQPROC_CONFIG, we assume that the site
has working DNS (or at least entry for each UUTx in //etc/hosts)

● Hardcoded PYTHONPATH=/home/dt100/PROJECTS/acq400_hapi

Explanation of the control scripts

There are two control scripts that are used to configure the systems for LLC capture. The
first is llc-config-utility.py which configures the aggregator and distributor onboard the
FPGA on all of the systems.

Then the clocks are set by sync_role.py. The clocks can be configured by the user (the
clocks should not be set faster than ~500kHz).

Output of the control script

The control script will display a histogram of the T_LATCH values, showing how
many samples were missed by the host computer (the T_LATCH is the sample
counter, so the difference between any two consecutive samples should be one).
Ideally there should be no samples missed. There is also some textual output of the
T_LATCH histogram data.

The control script will also automatically configure the UUT to calculate some
latencies. These latencies are encoded in the scratchpad and will be shown in a
histogram, along with some relevant statistics. Please note that the latency registers
will not be enabled unless the UUT is running the firmware “RELEASE acq400-125-
20190930193608” or above. If your system is not running this release then you can
upgrade according to section 29.3 of the the 4GUG available here:
http://www.d-tacq.com/resources/d-tacq-4G-acq4xx-UserGuide-r28.pdf

Example histograms are are shown in the following pages. Since there are three
UUTs in the loop for this test, there will be six histograms shown in total. Once the
FAT has been completed these can be turned off inside the script by disabling the
analysis.

http://www.d-tacq.com/resources/d-tacq-4G-acq4xx-UserGuide-r28.pdf

First UUT sample construction
Sample 1 Sample 2 ... Sample N

128 short words
of AI data

(where 32767 = 10V
And -32768 = -10V)

1 long word
of DIO data

15 long words of
scratchpad

[0]
 Sample
counter

[1]
Micro-

Second
counter

[2]
Pollcat

(busy wait
time >1 is

good)

[3]
Difftime in

microseconds
(absolute time

waiting
for sample)

[4]
Latency:

LATEST &
AVERAGE

[5]
Latency:

MAX & MIN

[6]
Ident:

0xcccc

[7]
8th long

word to end:
spare

This long word is
actually two shorts

combined. The top half
is the Latest and the

bottom half is the Average.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

This long word is
actually two shorts

combined. The top half
is the Max and the

bottom half is the Min.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

Note: In the scratchpad blue
fields are generated
on the acq2106 and

yellow fields are inserted
by the control program

Second UUT sample construction
Sample 1 Sample 2 ... Sample N

128 short words
of AI data

(where 32767 = 10V
And -32768 = -10V)

16 long words of
scratchpad

[0]
 Sample
counter

[1]
Micro-

Second
counter

[2]
Pollcat

(busy wait
time >1 is

good)

[3]
Difftime in

microseconds
(absolute time

waiting
for sample)

[4]
Latency:

LATEST &
AVERAGE

[5]
Latency:

MAX & MIN

[6]
Ident:

0xcccc

[7]
8th long

word to end:
spare

This long word is
actually two shorts

combined. The top half
is the Latest and the

bottom half is the Average.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

This long word is
actually two shorts

combined. The top half
is the Max and the

bottom half is the Min.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

Note: In the scratchpad blue
fields are generated
on the acq2106 and

yellow fields are inserted
by the control program

Histogram of the sample counter
(T_LATCH) on an ideal run.

Histogram of the FPGA maximum
latency register

Plotting data from the first UUT

Due to the number of channels and number of cards, there are two separate example
commands to plot data (one command for each UUT).

The commands use a python script called host_demux.py which can be found in the
user_apps/analysis/ directory of acq400_hapi. The first command is as such:

python ./host_demux.py --src=/home/dt100/PROJECTS/AFHBA404/acq2106_183_VI.dat
--nchan=160 --pchan=1,33,78 --data_type=16 --plot_mpl=1 --mpl_subrate=1
acq2106_183

Provided the system has been connected according to the setup diagram on page 4, this will
plot:

1. The input channel (CH001),

2. The first AO loopback (CH033),

3. The first DO loopback (any from CH065:CH097, with CH078 chosen for readability),

The resultant plot is shown on the next slide.

Data plotted from the first (master)
UUT

1. Sig gen
wave

2. AO1

3. DO1

Note: Capture
reduced to
10000 samples
for better
visibility

Plotting data from the second UUT

The command to plot data from the second UUT is as
follows:

python ./host_demux.py
--src=/home/dt100/PROJECTS/AFHBA404/acq2106_184_VI.dat --
nchan=160 --pchan=1 --data_type=16 --plot_mpl=1 --
mpl_subrate=1 acq2106_184

This will plot:

1. The first input channel (signal generator)

Data plotted from the second (slave)
UUT

1. Sig gen
signal on
CH01

Note: Capture
reduced to
10000 samples
for better
visibility

Demonstration of 16 bits of digital
output looped back to an AI module
Here is an example of showing all 16 digital outputs on a DIO432 looped back
to 16 channels on an AI module.

The command to do this was:
python ./host_demux.py --src=/home/dt100/PROJECTS/AFHBA404/acq2106_183_VI.dat --
nchan=160 --pchan=65:80 --data_type=16 --plot_mpl=1 --mpl_subrate=1 acq2106_183

Analysing the latency of the data

The control script analyses the FPGA latency registers and plots
the histogram of that data, but the latency can also be seen on a
scope for an independent verification of the latency. There are
already guides written by D-TACQ that explain how to measure the
latency of the system. The D-TACQ low latency white paper is
available here:

http://www.d-tacq.com/resources/LLC_White_Paper.pdf

And the D-TACQ LLC system latency measurement guide,
available here:

LLC-system-latency-measurement-guide.pdf

The following page contains a scope trace showing the latency of
the system.

http://www.d-tacq.com/resources/LLC_White_Paper.pdf
https://github.com/seanalsop/LLC-system-latency-measurement-guide/releases/download/v1/LLC-system-latency-measurement-guide-r5.pdf

Using hexdump to view the data

It can be useful to hexdump the data to check
the composition of the data. The following
command may be changed to check different
columns of long word data (scratchpad data for
instance).
hexdump -e '80/4 "%08x," "\n"' acq2106_183_VI.dat | cut -d, -f1,4,8,49-55 | head

The following command will work for viewing
short word data (acq424 channels for instance).
hexdump -e '160/2 "%04x," "\n"' acq2106_183_VI.dat | cut -d, -f1-10 | more

Debug

If something doesn’t work in acqproc_multi.sh then there are a few
steps to take to make sure things are configured correctly. The
acqproc_multi script assumes that the system configuration is identical
to that in the diagram on page 5. It is worth checking that this is the
case. HDMI connections and SFP connections are crucial to have wired
correctly.

If the system is configured exactly as shown on page 5, then the user
should check the clocks and triggers on each UUT individually. The
best method of doing this is using CS Studio. Instructions for installing
and using CS Studio can be found here:

https://github.com/D-TACQ/ACQ400CSS

Once CS Studio is installed the user should check for each UUT that
the clocks and triggers are accounted for.

https://github.com/D-TACQ/ACQ400CSS

CS Studio counters page

The CS Studio counters page should look very similar to the image below after running a capture
using acqproc_multi.sh. It contains the information for the clocks on each site and information about
the triggers. In this case the trigger is set to soft, so we get 1 soft trigger in the d1 trigger counter box,
and a corresponding trigger in the d2 trigger box. The user should check this information for each UUT.

Check UUTs are streaming

To check that the UUTs are streaming data the user should observe the stream tab of the capture OPI
as shown below. During a capture the sample count should be ticking up. The clock speed should also
be visible in the box next to it. The rate will also be visible in the rate box. Again, this should be verified
for all UUTs.

Check CS Studio MGT-SFP page

The MGT-SFP page is useful for checking whether data has been sent to the host and if data has been
returned from the host. After running one capture the page should look similar to the image below. There
should be 1 push buffer and 1 pull buffer with a non zero value in each (how large depends on how much
data has been streamed). Check all the UUTs are the same after rebooting and running a single capture.

Checking which sites are enabled

If there is data going to the host (as shown in the previous page), but the system still isn’t
working, then check that the correct sites are included in the aggregator. This can also be
seen in the image in the previous slide in the ‘push’ and ‘pull’ boxes in the MGT-SFP OPI.
The sites included in the ‘push’ box should be AI and DI, and the sites included in the ‘pull’
box should be AO and DO. Note that DO and DI will likely be the same site (site 6).

Checking the DI

The user can verify the Digital Input by
attaching a square wave signal to the DIO432
mezzanine and an AI channel. By default the
lower DIO432 will be configured half as DO and
half as DI. Connecting channel 17 will toggle
the 17th bit of the DIO data. An example of this
is shown on the following slide.

17th bit toggling

[dt100@seil AFHBA404]$ hexdump -e '80/4 "%08x " "\n"' acq2106_183_VI.dat | awk '{ print $65" "$66 }' | more

00000000 00000001

00000000 00000002

00010001 00000003

...

0001000e 00000011

...

0001000f 00000012

00000011 00000013

...

00000023 00000026

00010026 00000029

00010026 0000002a

Hexdump DI vs AI

The following command will show the sampled AI data against the DI data, with the sample counter included. Please note that
due to the way the DIO samples it will always lag one sample behind the AI.

[dt100@seil AFHBA404]$ hexdump -e '128/2 "%04x," 1/4 "%08x," 1/4 "%10d," 14/4 "%08x," "\n"' acq2106_183_VI.dat | cut -d, -f1-4,129,130 | more

005e,3e46,0038,000f,00000000, 1

0042,3e5d,0031,000a,00000000, 2

002c,3e50,0028,0008,00000000, 3

001f,3e53,0020,0005,00010001, 4

0015,3e57,0018,0003,00010002, 5

ffad,0013,ffd4,fff0,00010003, 6

ffc2,0001,ffd4,fff2,00000004, 7

ffd4,0003,ffd7,fff5,00000005, 8

ffe0,0006,ffdc,fff7,00000006, 9

ffe7,0005,ffe2,fff9,00000007, 10

004c,3e47,0026,000c,00000008, 11

0036,3e5a,0023,000a,00010009, 12

0024,3e54,001e,0006,0001000a, 13

0019,3e55,0017,0003,0001000b, 14

0011,3e3d,0011,0002,0001000c, 15

ffaa,0011,ffcf,fff0,0001000d, 16

ffc2,fffe,ffd0,fff2,0000000e, 17

ffd2,0001,ffd6,fff4,0000000f, 18

ffdf,0006,ffdb,fff7,00000010, 19

ffe6,0008,ffe2,fff8,00000011, 20

004e,3e46,0022,000b,00000012, 21

0036,3e5a,0023,0008,00010013, 22

0025,3e54,001e,0005,00010014, 23

001a,3e56,0018,0004,00010015, 24

0011,3e58,0010,0000,00010016, 25

ffab,0010,ffcf,ffef,00010017, 26

ffc1,fffc,ffcf,fff3,00000018, 27

Hexdump DI vs AI with acq196
emulation

The following command is the same as the previous command, except with acq196 emulation enabled (so real CH02
appears demuxed on CH17):
[dt100@seil AFHBA404]$ hexdump -e '128/2 "%04x," 1/4 "%08x," 1/4 "%10d," 14/4 "%08x," "\n"' uut2_data.dat | cut -d, -f1,2,17,129,130 | more
004b,0043,3e4d,00000000, 1
0035,002e,3e46,00000000, 2
0025,001e,3e4a,00000000, 3
0017,0014,3e45,00010000, 4
0013,000c,3e46,00010003, 5
ffbd,ffb9,ffef,00010003, 6
ffcc,ffc9,0009,00000004, 7
ffda,ffd6,fff9,00000004, 8
ffe3,ffdf,fffa,00000006, 9
ffeb,ffe3,fffb,00000007, 10
003c,0035,3e4c,00000008, 11
002c,0025,3e42,00010009, 12
001f,0018,3e43,0001000a, 13
0012,000e,3e47,0001000b, 14
0008,0005,3e4b,0001000c, 15
ffb4,ffb3,ffef,0001000d, 16
ffc6,ffc2,fff0,0000000e, 17
ffd3,ffd0,fffd,0000000e, 18
ffdd,ffd6,fff9,00000010, 19
ffe4,ffdf,fffb,00000010, 20
0038,0030,3e4d,00000012, 21
0023,0021,3e45,00010013, 22
0018,0013,3e41,00010015, 23
0010,000b,3e45,00010015, 24
0008,0003,3e4e,00010017, 25
ffb5,ffaf,fff7,00010017, 26
ffc5,ffc3,fff6,00000018, 27

	Title
	Revisions
	Slide 3
	Driver install
	acq400_hapi install
	System diagram
	Setting up CS-Studio
	Slide 8
	Slide 9
	Control script
	Slide 11
	Control script 2
	Control script output
	Sample construction
	Slide 15
	T_LATCH histogram
	Latency histogram
	Plotting 1
	data plot 1
	Plotting 2
	Data plot 2
	DIO extra plot
	Analysing latency
	Latencies as shown on a scope
	Hexdump
	Debug 1
	Debug 2
	Debug 3
	Debug 4
	Debug 5
	Checking DI
	Toggling bits in the DI
	Hexdump of DI v AI
	acq196 emulation

